
Password-store keeps your passwords (or any other sensitive information) saved in
GnuPG encrypted files organized in ~/.password-store. For more information
about GPG, consult the GNU Privacy Handbook.

Getting started

To get started, install pass and generate a keypair.

$ brew install pass
$ gpg --gen-key
$ gpg --list-keys

Back up the keypair and store it in a safe place.

$ gpg --export-secret-keys --armor <fingerprint> > privkey.asc
$ gpg --export --armor <fingerprint> > pubkey.asc

Start using pass

$ pass init <fingerprint>

Each entry is its own file, so you can store whatever text information you’d like,
eg. usernames, email addresses, answers to secret questions, two factor auth
backup codes, etc. Read the man page for a complete description of its features.

A particularly nice feature is the ability to keep your password store in a git
repository.

Managing your password-store with git

Initialize a new bare repository on your server.

server $ git init --bare ~/.password-store

Make your local password store a git respository and add a remote URL that
points to your server.

$ pass git init
$ pass git remote add origin user@server:~/.password-store
$ pass git push

Using our password store on a new host is easy now.

Import your keypair.

$ gpg --import pubkey.asc
$ gpg --allow-secret-key-import --import privkey.asc

Trust them if necessary.

$ gpg --edit-key <fingerprint>

Clone your repository to ~/.password-store.

1

http://www.zx2c4.com/projects/password-store/
https://www.gnupg.org/gph/en/manual.html
http://git.zx2c4.com/password-store/about/
https://www.gnupg.org/gph/en/manual.html#AEN346


$ git clone user@server:~/.password-store

At this point you can use pass on each host and manually synch them with
pass git push and pass git pull. To delete your password store, just rm
-rf ~/.password-store.

2


	Getting started
	Start using pass
	Managing your password-store with git

