
Andy	Dote Archive 	Talks 	Notes 	Tags 	Contact 	RSS

Better	BASHing	Through	Technology
28	Aug	2020

I	write	a	lot	of	bash	scripts	for	both	my	day	job	and	my	personal	projects,	and	while	they	are	functional,	bash	scripts	always
seem	to	lack	that	structure	that	I	want,	especially	when	compared	to	writing	something	in	Go	or	C#.	The	main	problem	I	have
with	bash	scripts	is	that	when	I	use	functions,	I	lose	the	ability	to	log	things.

For	example	the	get_config_path	function	will	print	the	path	to	the	configuration	file,	which	will	get	consumed	by	the	do_work
function:

get_config_path()	{
		echo	"Finding	Machine	Configurtaion"

		if	[-n	"$CONFIG_PATH"]	&&	[-e	"$CONFIG_PATH"];	then
				#	echo	"Using	Configuration	from	environment"
				echo	"$CONFIG_PATH"
				return
		fi

		if	[-e	"~/.config/demo/config.toml"];	then
				#	echo	"Using	Configuration	directory	file"
				echo	"~/.config/demo/config.toml"
				return
		fi

		#	echo	"Unable	to	find	configuration"
		exit	1
}

do_work()	{
		local	-r	config=$(get_config_path)

		#	actual	work...
}

The	problem	is,	if	I	include	the	echo	statements	which	are	log	lines,	the	config	variable	in	the	do_work	function	will	contain	them
too.

In	the	past,	this	has	caused	me	to	use	functions	in	bash	very	sparingly;	usually	with	things	that	are	short	that	I	don’t	need	to	add
much	logging	to.	However,	I	was	recently	building	some	AMIs,	and	happened	to	be	browsing	the	Consul	and	Vault	terraform
module	source,	which	uses	several	bash	scripts	which	are	written	in	a	different	style,	which	makes	them	vastly	more
maintainable.

So	let’s	have	a	look	at	the	new	structure	I	use,	which	is	heavily	based	off	these	scripts.

Better	Bash	Scripts
Before	we	get	to	the	implementation,	make	sure	you	are	using	ShellCheck	it	provides	static	analysis	of	your	scripts,	pointing	out
many	things	like	missing	quotes,	or	incorrectly	handling	arrays.	It	has	plugins	for	all	your	favourite	editors	too.

0.	General	Styles	and	Constructs

All	variables	should	be	declared	readonly,	and	local	if	possible,	to	help	prevent	surprise	values	from	being	present	if	other
functions	forget	to	do	the	same.

#top	level
readonly	SCRIPT_NAME="$(basename	"$0")"

some_method()	{

https://andydote.co.uk/
https://andydote.co.uk/archive/
https://andydote.co.uk/talks/
https://andydote.co.uk/notes/
https://andydote.co.uk/tags/
https://andydote.co.uk/contact/
https://andydote.co.uk/rss.xml
https://andydote.co.uk/2020/08/28/better-bashing-through-technology/
https://github.com/hashicorp/terraform-aws-consul
https://github.com/hashicorp/terraform-aws-vault
https://github.com/koalaman/shellcheck/

some_method()	{
		#	within	a	method
		local	-r	config_path="$1"
}

Functions	should	assign	their	passed	arguments	to	named	variables	as	the	first	thing	they	do,	preferably	matching	the	variable
name	they	are	passed,	which	helps	later	when	you	are	searching	through	a	script	for	usages	of	“config_file”	and	not	having	to
find	other	names/aliases	for	the	same	value.

read_config()	{
		local	-r	config_file="$1"
		local	-r	skip_validation="$2"

		#	...
}

invoke()	{
		#	...

		read_config	"$config_file"	"$skip_validation"
}

1.	Error	Handling
It	should	go	without	saying,	but	you	really	need	to	start	your	scripts	with	the	following:

#!/bin/bash

set	-euo	pipefail;

There	are	many	better	articles	on	what	these	specifically	do,	but	suffice	to	say:

e	causes	the	script	to	stop	on	errors
u	causes	it	to	error	on	undefined	variables	being	used
o	pipefail	causes	a	non-zero	exit	code	from	any	command	in	a	pipeline	to	fail	the	script	too	(rather	than	just	the	last
command.)

2.	Logging
The	real	advantage	of	this	structure	is	we	get	to	have	log	statements!	This	is	achieved	by	doing	all	logging	to	stderr	instead	of
stdout.	We	use	a	standardised	log	function	across	all	the	scripts,	which	also	includes	the	script’s	name	so	when	calling	other
scripts	you	can	see	which	one	wrote	the	log	line:

readonly	SCRIPT_NAME="$(basename	"$0")"

log()	{
		local	-r	level="$1"
		local	-r	message="$2"
		local	-r	timestamp=$(date	+"%Y-%m-%d	%H:%M:%S")

		>&2	echo	-e	"${timestamp}	[${level}]	[$SCRIPT_NAME]	${message}"
}

Invoking	the	function	is	log	"INFO"	"Some	status"	or	log	"WARN"	"Something	concerning"	etc.

3.	Error	Checking
We	have	some	standard	assertion	functions	which	are	used	by	the	script	when	starting	up	to	validate	arguments:

assert_not_empty()	{
		local	-r	arg_name="$1"
		local	-r	arg_value="$2"

		if	[[-z	"$arg_value"]];	then

https://vaneyckt.io/posts/safer_bash_scripts_with_set_euxo_pipefail/

		if	[[-z	"$arg_value"]];	then
				log	"ERROR"	"The	value	for	'$arg_name'	cannot	be	empty"
				exit	1
		fi
}

assert_is_installed()	{
		local	-r	name="$1"

		if	[[!	$(command	-v	"$name")]];	then
				log	"ERROR"	"The	binary	'$name'	is	required	by	this	script	but	is	not	installed	or	in	the	system's	
PATH."
				exit	1
		fi
}

4.	Argument	parsing
When	scripts	need	to	take	parameters	in,	I	prefer	to	use	long-flag	style,	as	they	are	little	more	readable	for	people	checking
invocations	again	in	the	future.	This	function	is	usually	always	called	run,	and	is	the	last	function	defined,	and	is	invoked
immediately	after	definition,	passing	in	all	script	arguments	(run	"$@"):

run()	{
		local	namespace=""
		local	suffix=""
		local	dry_run="false"

		while	[[$#	-gt	0]];	do
				local	key="$1"

				local	key="$1"

				case	"$key"	in
						--namespace)
								namespace="$2"
								shift
								;;
						--suffix)
								assert_not_empty	"$key"	"$2"
								suffix="$2"
								shift
								;;
						--dry-run)
								dry_run="true"
								;;
						--help)
								print_usage
								exit
								;;
						*)
								log	"ERROR"	"Unrecognized	argument:	$key"
								print_usage
								exit	1
								;;
				esac

				shift
		done

		#	mandatory	flag	validation
		assert_not_empty	"--namespace"	"$namespace"

		#	make	sure	tools	are	installed
		assert_is_installed	"vault"
		assert_is_installed	"openssl"
		assert_is_installed	"jq"

		#	do	the	work!
		local	-r	cert=$(generate_cert	"$suffix")

		store_cert	"$namespace"	"$cert"	"$dry_run"

}

run	"$@"

The	validation	uses	the	assert_not_empty	function	defined	above,	which	is	used	in	two	ways:	after	the	while	loop	to	check
mandatory	values	have	been	filled	in,	and	within	the	case	statement	for	optional	flags	values.

We	also	use	assert_is_installed	to	validate	that	utilities	we	need	are	installed,	such	as	vault,	openssl	and	jq

The	print_usage	function	is	just	a	set	of	echo	statements	giving	all	the	flags,	and	an	example	of	invokation:

print_usage()	{
		echo
		echo	"Usage:	$SCRIPT_NAME	[OPTIONS]"
		echo
		echo	"This	script	creates	a	new	certiticate,	and	it	installs	it	into	the	right	namespace"
		echo
		echo	"Options:"

«	Sharing	Docker	Layers	Between	Build	Agents	Isolated	Docker	Multistage	Images	»

		echo	"Options:"
		echo
		echo	-e	"		--namespace\tThe	namespace	to	install	the	certificate	in"
		echo	-e	"		--suffix\tAn	optional	suffix	for	the	hostname"
		echo	-e	"		--dry-run\tDon't	install	the	certificate"
		echo
		echo	"Example:"
		echo
		echo	"		$SCRIPT_NAME	--namespace	test	--dry-run"
}

Usage
I	keep	a	single	template	file	which	has	all	of	this	written	into	it,	and	new	scripts	start	off	with	a	copy-paste	of	the	template.	Could
it	be	DRYer?	Sure,	but	then	I	have	to	deal	with	dependency	management,	and	it’s	just	not	worth	the	hassle	and	overhead.

bash

https://andydote.co.uk/2020/05/14/docker-layer-sharing/
https://andydote.co.uk/2020/11/01/docker-multistage-containers/
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://andydote.co.uk/tags/#bash

